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a b s t r a c t

In recent years, obesity and its associated health disorders and costs have increased. Accumulation of adi-
pose tissue, or fat, in the intra-abdominal adipose depot is associated with an increased risk of developing
cardiovascular problems, type-2 diabetes mellitus, certain cancers, and other disorders like the metabolic
syndrome. Males and females differ in terms of how and where their body fat is stored, in their hormonal
secretions, and in their neural responses to signals regulating weight and body fat distribution. Men and
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post-menopausal women accumulate more fat in their intra-abdominal depots than pre-menopausal
women, resulting in a greater risk of developing complications associated with obesity. The goal of this
review is to discuss the current literature on sexual dimorphisms in body weight regulation, adipose
tissue accrual and deposition.

© 2009 Elsevier Ltd. All rights reserved.
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1. Introduction
Gonadal hormones potently control food intake and body
weight. In female animals, the activational effects of estradiol
acutely and chronically influence body weight homeostasis [1–3].
In rats and mice, estrogen exerts a tonic inhibitory effect on meal
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ize and daily food intake throughout the ovarian cycle and a cyclic
nhibitory effect during the peri-ovulatory phase [1,3–5]. Removal
f estrogen leads to changes in meal size and duration [6,7], hyper-
hagia, and obesity. Estrogen has similar effects in humans where it
odulates peri-ovulatory decreases in daily food intake [8]. Addi-

ionally, reductions in estrogen are associated with changes in body
eight and fat distribution in humans, which parallel the findings in

nimals [8]. Estrogen has the ability to control energy balance, food
ntake, and body fat distribution and this may be mediated through
ts interaction with orexigenic and anorexigenic hormones. This
eview aims to explore these interactions and discuss the link
etween estrogen and obesity.

.1. Estrogen regulates adiposity

The accumulation of fat in a central distribution (intra-
bdominal) has emerged as a risk factor for the metabolic syndrome
9,10] which includes a higher risk of diabetes, hypertriglyc-
ridemia, hypertension, and cardiovascular disease [11]. Estrogen
romotes the accumulation of subcutaneous fat [12], and the loss of
strogen with menopause is associated with an increase in central
at [10,13]. The sexual dimorphism in adipose tissue distribution

ay partially explain the greater risk for the metabolic syndrome
n men compared with pre-menopausal women.

.2. Estrogen regulates adipose tissue distribution

Visceral fat varies inversely with estrogen levels [14]. When
strogen levels become sufficiently low visceral fat accumulation
ccurs in females, possibly due to direct effects of estrogen, espe-
ially since progesterone and androgen receptors (PR and AR), as
ell as, estrogen receptor (ER) are expressed in adipose tissues

15]. Subcutaneous adipose tissue has higher concentrations of
R and PR; however, visceral adipose tissue has higher concen-
rations of AR [16]. Additionally, subcutaneous adipose tissue has
ew androgen receptors, and estrogen down-regulates AR expres-
ion in subcutaneous fat [17]. Adipose tissue-specific AR knock-out
ice have increased intra-adipose estradiol levels, which leads to

ncreased subcutaneous obesity and hyperleptinemia [18].
Ovariectomized (OVX) rats gain fat, specifically visceral fat with

o change of subcutaneous fat [19]. Peripheral or central adminis-
ration of estradiol to OVX rats restores central leptin sensitivity
nd changes their body fat distribution to mirror that of intact
emales; additionally, altering the sex hormone milieu in males
ith estradiol administration increases sensitivity to central lep-

in and increases subcutaneous fat deposition [19]. An important
mplication from these findings is that estrogen regulates body
at distribution, interacts with the integrated adiposity message
onveyed to the brain by leptin, and enhances leptin’s action in
ympathetic activation to the visceral fat, which facilitates fat mobi-
ization in the visceral depot and fat deposition in the subcutaneous
epot.

.3. Estrogen regulates adiposity through estrogen receptors

Estrogen regulates body adiposity and fat distribution through
ts receptors, ER alpha (ER�) and beta (ER�) [20,21]. However, only
R� has been reported to have a major influence on energy home-
stasis [22]. ER� is necessary for estradiol’s genomic actions on
ody weight regulation [23] while ER� functions more as a modula-
or of estrogen actions [24]. Rapid, non-genomic actions of estradiol

lso have been described and some of them appear to involve ER�
25].

Heine et al. [22] reported that male and female mice with total
ody deletion of ER�, ER�-knock-out (�ERKO) mice, have increased
diposity in both male and female mice, suggesting an important
stry & Molecular Biology 122 (2010) 65–73

role for this estrogen receptor in the regulation of body weight and
adiposity. Recently, site-specific knockdown of ER� expression in
the VMH, a brain region critical for body weight regulation, demon-
strates the role of VMH ER� activity in the regulation of body weight
homeostasis [23]. Knockdown of VMH ER� results in obesity due to
an anabolic process, with changes in energy expenditure primarily
mediating the weight gain [23]. These data are consistent to pre-
vious finding in the �ERKO mice where it has been demonstrated
that the obesity is primarily due to changes in energy expendi-
ture rather than changes in food intake [22,26] and those mice
have increased visceral adiposity (unpublished data). These data
suggest that estrogen signaling with critical hypothalamic nuclei
is responsible for the regulation of body weight via modulating
energy expenditure.

Since ER� is expressed in hypothalamic areas that regu-
late energy homeostasis [27–33], the absence of ER� expression
is consistent with changes in body weight. Furthermore, ER�
polymorphisms identified in humans have been associated with
increased levels of visceral fat.

A ventral medial nucleus (VMN) specific ER� knockdown in both
female mice and rats resulted in phenotypes characteristic of a
metabolic syndrome [23]. Microinjections of low doses of estradiol
directly into the brain were shown to inhibit food intake [19,34,35].
Taken together, these observations suggest that the binding of
estradiol to ER� in the hypothalamus, or elsewhere in the brain,
may represent a mechanism by which estradiol regulates food
intake, body weight, and possibly body fat distribution.

1.4. Estrogen regulates adiposity by decreasing inflammation

Obesity is a state of chronic inflammation, and inflammatory sig-
naling pathways in obesity are linked to insulin resistance [36–38].
Sex differences where females are protected have been reported in
diet-induced obesity, insulin resistance and inflammatory response
to a high-fat (HF) diet [39–41]. This may be explained in part by the
anti-inflammatory properties of estrogen [42]. Recent studies have
shown that estradiol may play a role in reducing the inflammatory
response in adipose, cardiovascular, and neural systems [43], in
addition to being neuroprotective both in vivo and in vitro [44,45].

ER� (and in some cases ER�) is expressed in immune and
cytokine-producing cells including macrophages and microglia,
and in vitro studies have shown estradiol-activated ER� decreases
the number of pro-inflammatory cytokines [44,45]. The anti-
inflammatory properties of estradiol can be partially explained by
the ability of ERs to act as transcriptional repressors by inhibiting
the activity of nuclear factor kappa B (NF�B) through protein-
protein interactions between agonist-bound ERs and activated
NF�B subunits [42,46,47]. Estradiol’s inhibitory effect on NF�B
function is not fully understood and may be target selective
[47–49].

Symptoms of a metabolic syndrome increase when animals are
maintained on a HF diet or when females have low ovarian hormone
levels. Free fatty acids (FFAs), particularly saturated fatty acids,
increase inflammation by activating toll-like receptor 4 (TLR4) [50].
Muscle and liver expression of tumor necrosis factor-alpha (TNF�),
interleukin-6 (IL-6), and NF�B also increase with HF diets [50].
Estradiol has been shown to be neuroprotective and to increase
the expression of growth factors and proteins involved in apoptosis
[51,52].

Estradiol signaling pathways are active in monocytes and

macrophages, and ERs are expressed by these cells [45,53]. There-
fore, the protective effects of estradiol in neurodegenerative
diseases can be mediated by inhibiting the inflammatory response,
and consequently, hormone withdrawal can increase inflammation
[53].
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Both in a model of brain inflammation and in primary cultures
f microglial cells, estradiol inhibited the synthesis of inflamma-
ory mediators induced by lipopolysaccharide (LPS) [44,45,53,54].

oreover, hormone loss in OVX mice resulted in increased
icroglial activation [54], while estradiol replacement decreased
icroglia activation [53]. These data provide strong evidence that

hronic inflammation in the brain can be regulated by estradiol.

. Estrogen interacts with orexigenic neuropeptides

Estrogen has been proposed to act directly and indirectly to
ecrease orexigenic peptides and decrease food intake. In this sec-
ion, we will review the literature and describing the interactions
f estrogen and neuropeptides that increase food intake.

.1. Neuropeptide Y

Neuropeptide Y (NPY) is an important central regulator of
nergy homeostasis in many hypothalamic neurons [55,56]. NPY
s a potent orexigen, which increases feeding behavior in fed and
asted animals [57]. Estrogen acts via the estrogen receptors (ERs)
n the hypothalamus to reduce feeding [58], and may mediate its
norectic effects by decreasing NPY expression or release [59]. In
ddition, estrogen directly affects NPY neurons, however, in which
rea of the brain or how this effect occurs is still unclear [61].

Ovariectomized (OVX) rats experience a rapid weight gain,
hich can be reversed by estradiol replacement [6,59] adminis-

ered either peripherally or centrally [19,62]. Estradiol deficiency
esults in increased NPY concentrations in the paraventricular
ucleus (PVN) of the hypothalamus [63] and elevated NPY mRNA
xpression in the arcuate nucleus (ARC) of the hypothalamus
64,65]. Bonavera et al. reported that estradiol treatment decreased
ypothalamic NPY levels in the PVN of OVX rats [59,63].

NPY neurons in the hypothalamus not only affect feeding, but
hey also influence reproduction. Therefore, estradiol can mod-
late both of these neuroendrocrine systems by regulating NPY
ene expression. NPY neurons are activated by signals indicating
educed energy availability, such as decreased levels of circulating
lucose, leptin or insulin, which increase NPY release in the PVN
o stimulate feeding [66]. This may be due to estradiol stimulating
PY [67], NPY Y1 receptor [68] expression and NPY release [59]. In
n ex vivo hypothalamic neuronal cell line, N-38, estradiol affected
he expression of NPY in a biphasic manner, which corresponded
o changes in the ER�:ER� ratio. When the ER�:ER� ratio was high,
PY transcription was repressed; conversely, when the ratio was

ow, NPY transcription was stimulated. These results provided evi-
ence that the ratio of ERs expression in the hypothalamus may
ifferentially regulate NPY in vivo [61].

.2. Ghrelin

Ghrelin acts on growth hormone secretagogue receptors
GHSRs) to increase food intake. While mainly synthesized by the
tomach, ghrelin is also found in the hypothalamus, pituitary gland,
ippocampus, brain cortex, adrenal gland, intestine, and pancreas
69–71]. Exogenous ghrelin is less potent in intact female rats than
n male rats or OVX females [72]. Central, intra-third ventricular
i3vt), or peripheral ghrelin administration reliably increased feed-
ng in intact male rats and OVX females [73–79]; however, the
hreshold for a significant increase in feeding using either admin-
stration route was significantly greater in intact females than in
ales or OVX females [72]. When OVX rats were treated with estra-
iol, moderate intra-peritoneal (i.p.) or i3vt doses of ghrelin no

onger stimulated eating. Together, these data demonstrate that
stradiol reduces the orexigenic potency of ghrelin. Lastly, estra-
iol reduced the eating-stimulatory effect of i3vt ghrelin in male
stry & Molecular Biology 122 (2010) 65–73 67

rats, indicating that the estrogenic effect exists in both sexes, which
is a point of potential therapeutic relevance [72]. Careful attention
to sex differences and gonadal hormone status should be included
in the development of any ghrelin-based clinical control for eating
behaviors.

The eating-stimulatory effect of ghrelin varies across different
phases of the ovarian cycle in intact rats [72]. Administration of
i3vt ghrelin had no reliable overall effect when cycle day was not
taken into account. However, when the cycle day was considered,
i3vt ghrelin increased eating during diestrus 1 and diestrus 2, but
not during proestrus or estrus. In addition, in estradiol-treated
OVX rats, ghrelin increased food intake on the days that modeled
diestrus in intact rats, but not on the days that modeled proestrus or
estrus. This indicates that there are cyclic variations in eating in rats
and mice, and spontaneous food intake is maximal during diestrus
and minimal during estrus. Therefore, the analogous peri-ovulatory
decreases in eating in women may be due to changes in estrogenic
tone that affect ghrelin’s eating-stimulatory action [72]. To assess
the importance of ghrelin signaling in OVX’d-induced hyperpha-
gia and obesity, Ghsr−/− mice lacking GHSR were OVX’d [72]. The
OVX mice, which were similar to wild-type mice in body weight
and food intake pre-surgery, showed no increase in food intake or
body weight gain after surgery. This indicates that estradiol toni-
cally inhibits endogenous ghrelin signaling in mice and that release
from this inhibition is necessary for OVX mice to increase food
intake and body weight. This mechanism may account for other sex
differences in eating and weight regulation previously reported in
Ghsr−/− mice. For example, female Ghsr−/− mice accumulated less
body weight and adiposity when given a HF diet [80]. Also, the mag-
nitude of the differences in adiposity observed between Ghsr−/− and
wild-type mice were greater in females than in males [80]. Ghrelin
signaling appears to be a necessary component of the estrogenic
control of eating and weight regulation [72].

The site of the GHSR-mediated effects on eating remains unclear
[78,81–83], so estradiol may influence ghrelin and its receptors
either centrally or peripherally [72]. In male brains, GHSR have
been implicated in ghrelin’s eating-stimulatory effect in the ARC,
PVN, ventral tegmental area, and dorsal vagal complex [76,83–88].
Since administration of exogenous ghrelin can reach all of these
ER-containing sites, each area could mediate the observed sex dif-
ferences [72]. In contrast, Currie et al. failed to observe any sex
difference following direct ghrelin microinjections to the ARC or
PVN [89]. However, since ovarian cycling was not monitored, it is
possible that the female rats were acyclic, which may have caused
an artificial increase in ghrelin-induced eating. It is also possible
that estrogenic actions on nucleus tractus solitaries (NTS) neurons
contribute to the observed effects. Exogenous estradiol was shown
to act on ER�-expressing neurons in the NTS to inhibit eating [90],
and ghrelin microinjection into the NTS stimulated eating in male
rats [87].

2.3. Melanin-concentrating hormone (MCH)

Since its discovery in hypothalamic neurons [91,92], MCH has
been recognized as an important regulator of energy homeosta-
sis [93]. Central administration of MCH promotes feeding [94,95],
while genetic ablation of the MCH gene produces a lean pheno-
type [96,97]. In addition, MCH is upregulated by fasting [94]. MCH
neurons in the lateral hypothalamic area (LHA) receive inputs from
NPY/AgRP and POMC neurons in the ARC [98–103]. Therefore, MCH
neurons are in a position to integrate the feeding response because

they have projections from the ARC and to brain structures like the
nucleus accumbens [104].

Messina et al. investigated the effect of centrally injected MCH
on feeding in estradiol- and vehicle-treated OVX rats and male
rats. MCH increased the meal size in all three groups. Addition-
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lly, intake increased more in rats in diestrus than rats in estrus,
lthough MCH increased food intake in both groups. Overall, estra-
iol decreased the orexigenic effect of MCH, leading the authors
o hypothesize that the decrease in food intake during estrus was

ediated by a decrease in MCH signaling [7]. In a second study, San-
ollo et al. examined whether the behavioral effects of MCH were
exually dimorphic. They observed a greater increase in food intake,
eal size, and water intake following MCH treatment in male rats

han in estradiol-treated OVX rats [6]. Additionally, they observed
hat higher MCH doses were necessary to increase food intake
n estradiol-treated OVX rats, suggesting that estradiol reduced

CH sensitivity in female rats [6]. Given that circulating levels
f estradiol are lower in males than in females, this sex differ-
nce may contribute to the increased sensitivity to MCH in male
ats.

There are several ways that estradiol could decrease MCH signal-
ng. By acting on nuclear ERs in the lateral hypothalamus (LH) and
ona incerta (ZI) [105], estradiol can alter gene transcription. ERs
an modulate gene expression locally by decreasing MCH synthe-
is. In support of this hypothesis, physiological doses of estradiol
ecreased pre-pro MCH mRNA expression in the ZI of OVX rats
106] and the LH of obese male rats [107]. In addition, chronic estra-
iol treatment in male rats blocked increases in LH MCH mRNA
xpression induced by fasting [107]. In contrast, pharmacologi-
al doses of estradiol in male mice increased MCH mRNA within
ypothalamic tissue punches [108]. These discrepancies emphasize
he need for additional research in intact, cycling rats to determine
he role of endogenous estradiol in regulating MCH mRNA expres-
ion. It is also possible that estradiol, acting at nuclear ERs in brain
egions that express MCH-1 receptors [28,109], can decrease MCH
ignaling by decreasing the number or binding affinity of MCH-1
eceptors. A recent study demonstrated that LH neurons contain-
ng MCH-1 receptors and ERs are not coexpressed, but are in close
roximity to one another [110].

Several studies evaluated whether MCH affects meal size or
umber [6,7,111]. The size of the first meal increased following
CH treatment in male and estradiol- or vehicle-treated OVX rats.

n male and vehicle-treated OVX rats, MCH increased the average
eal size throughout the period of increased food intake. There was

o change in meal size in the estradiol-treated OVX rats, and there
ere no differences in meal number in any group, indicating that
CH increases food intake by increasing meal size in both males

nd females [6].

. Estrogen interacts with anorexigenic neuropeptides

Estrogen has been reported to have an inhibitory effect on body
eight gain in animal models [4,19,62]. ER� null mice are obese,

nsulin resistant, and have decreased energy expenditure [22,112].
his model indicates that ER� is critical for the estrogenic control of
eeding behaviors and body weight [112]. Estrogen decreases food
ntake through its direct effects and through its interactions with
ther compounds that reduce food intake. In this section we will
eview the literature on estrogen’s interactions with anorexigenic
ormones.

.1. Insulin

Kennedy [113] hypothesized that fat stores produce a hormone
hat functions as a negative feedback control for adiposity, and one

arly suggestion was that hormone was insulin [114,115]. Plasma
nsulin levels directly correlate with body weight and adiposity
116–118]. Obese animals and humans have higher basal insulin
evels and secrete more insulin in response to a meal than lean indi-
iduals [116,119]. Insulin increases during meals and other periods
stry & Molecular Biology 122 (2010) 65–73

of positive energy balance and decreases during fasting and other
periods of negative energy balance.

Insulin receptors are distributed in discrete brain areas, includ-
ing the hypothalamus [120–122]. Hypothalamic insulin receptors
are thought to mediate food intake and body weight regulation via
mechanisms similar to leptin [102,123–126].

Hormones provide important regulatory signals to the brain.
Manipulation of gonadal steroid levels can influence leptin and
insulin sensitivities and body fat distribution [19]. This implies that
the relative amounts of androgen and estradiol are key determi-
nants of the brain’s sensitivity to the catabolic actions of insulin.
When there is proportionally less estrogen, this favors insulin sen-
sitivity.

3.2. Leptin

First described in 1994 [127], leptin has proven to be a key
metabolic hormone with actions throughout the body. Analogous
to insulin, plasma leptin levels are directly correlated with adipos-
ity. Circulating leptin is transported into the brain, where leptin
receptors exist in many areas, including the ARC [128,129]. Leptin
has many actions within the brain, including reducing food intake
and increasing energy expenditure.

Male and female rats differentially respond to centrally admin-
istered leptin [62,130]. In females, estradiol alters the sensitivity
to centrally administered leptin and changes the body fat distribu-
tion [19]. Peripheral or central administration of estradiol to OVX
females restores their central leptin sensitivity and changes their
body fat distribution to be more similar to intact females. Addition-
ally, administering estradiol to males increases the sensitivity to
central leptin and increases subcutaneous fat deposition [19]. These
findings indicate that gonadal steroids mediate body fat distribu-
tion and interact with the integrated adiposity message conveyed
to the brain by leptin, which results in differential sensitivities of
this signal in males and females.

Leptin provides a powerful catabolic signal to the brain, result-
ing in inhibition of food intake [99,102,123,131–136]. Leptin levels
are higher in females, even before puberty, compared with males,
and these levels are independent of differences in body composi-
tion [137–139]. After puberty, estrogen and testosterone further
modulate leptin synthesis and secretion via sex steroid receptor-
dependent transcriptional mechanisms [140]. Leptin is secreted
from adipose tissue in direct proportion to fat content, and it pen-
etrates the blood–brain barrier to interact with leptin receptors
in the hypothalamus and brainstem [99,123,131,134,141–143].
Although several splice variants of the leptin receptor are known,
OB-Rb is the critical variant for regulating energy balance [144].

ERs are also expressed in the brain, including the hypotha-
lamic regions that regulate food intake and body weight
[21,27,28,30–32,105,145]. OB-Rb expression has been colocalized
with ER� in the ARC [146], and estrogen has been reported to
regulate the expression of OB-Rb mRNA [147], possibly via an
estrogen-responsive element on the leptin receptor gene [148].
The extensive hypothalamic colocalization of these two receptors
suggests there is a closely coupled interaction for regulating the
behavioral and neuroendrocrine mechanisms. Studies indicate that
when estrogen levels are low, central leptin sensitivity is reduced,
as in OVX females [63] and intact males. Conversely, when estrogen
levels are relatively high, as in intact females, and in both estradiol-
treated OVX females and males, leptin sensitivity is high [62,149].

OB-Rb leptin receptors colocalize with several neuropeptides

believed to be involved in controlling food intake and reproduction.
Leptin has the ability to activate or inhibit hypothalamic neurons
[150–152]. Thus, leptin is ideally situated to link metabolic status
and brain function. Diano et al. reported colocalization of leptin
and estrogen receptors [146]. Animals with higher estrogen levels
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ave higher plasma leptin and higher hypothalamic OB-Rb expres-
ion levels [19]. There is an inverse relationship between plasma
eptin and hypothalamic OB-Rb mRNA, which is not correlated

ith estrogen status [19]. Additionally, hypothalamic OB-Rb mRNA
xpression was greater in OVX animals than in intact females,
onsistent with previous findings [153]. These results were in con-
rast with one study that observed no difference in hypothalamic
B-Rb mRNA expression between sham and OVX rats [63] and a

econd that reported decreased OB-Rb expression in OVX rats in
omparison to sham-operated females [154]. Kimura et al. [154]
etected no change in plasma leptin levels in OVX females, despite
bserving that the OVX rats weighed significantly more than the
ham-operated females. In contrast, in other studies, a significant
ncrease in plasma leptin was observed following the weight gain
ssociated with OVX [19,63]. These varying results indicate that the
ssay time may be critical for understanding the physiological roles
f estrogen and leptin in regulating body weight. Additionally, since
nly OB-Rb mRNA expression has been measured, it is unknown
ow estrogen may impact the OB-Rb protein and signaling.

The differences in leptin sensitivity caused by the presence or
bsence of estrogen must occur downstream of OB-Rb transcrip-
ion and translation [19]. Additionally, females have greater c-Fos
nd pSTAT3 immunoreactivity in the ARC than males following
3vt leptin (unpublished data), which suggests that despite having
ewer hypothalamic OB-Rbs, females have greater leptin signaling
n this brain region. Therefore, there may be an estrogen threshold
equired to enhance the central sensitivity to leptin.

.3. Serotonin

Estradiol decreases food intake by selectively influencing the
eural controls of meal size, which may require the serotoner-
ic system [155]. Estradiol heightens the anorexia induced by
ncreased serotonergic neurotransmission [156] and decreases the
yperphagia induced by decreased serotonergic neurotransmis-
ion [157,158]. Estradiol was reported to increase the expression of
he serotonin transporter (5-HTT) in the dorsal and median raphe
uclei [159]. Other labs reported that acute injection of estradiol

ncreased 5-HTT mRNA levels in the dorsal raphe nuclei (DRV) of
VX rats [160,161]. The DRV has reciprocal connections with the
ypothalamus and parabrachial nucleus [162,163] putting the DRV

n a position to directly regulate part of the neural network control-
ing food intake [159]. The estradiol/serotonin interaction may also
ave a clinical relevance, since human 5-HTT promoter polymor-
hisms are associated with anorexia nervosa, an eating disorder
hat primarily affects women [164,165].

.4. Cholecystokinin (CCK)

Cholecystokinin (CCK) is synthesized and released from cells
f the upper intestine and acts on abdominal CCK-A receptors. It
lays a variety of roles in the digestive process, including slowing
astric emptying and intestinal motility (see review [166]). CCK
xerts its satiety action primarily by activating subdiaphragmatic
agal afferent neurons [1,167–169]. Administration of CCK antago-
ists increases food intake by increasing meal size [170]. Several
xperiments highlighted the interactions between estrogen and
CK. CCK-A antagonists decreased food intake to a greater extent
hen intact female or estradiol-treated OVX rats were in estrus,

nd this effect was lessened in diestrus rats [171–174].
Because CCK satiation depends on vagal afferents [175–177],
p-regulation of CCK receptors in the terminals of vagal afferent
bers may account for the increased CCK sensitivity. To investigate
his hypothesis, in vitro quantitative autoradiography was used to

easure the effects of estradiol on the binding characteristics of
CK receptors in the nucleus of the solitary tract (NTS), a brain
stry & Molecular Biology 122 (2010) 65–73 69

area that receives terminal projections of abdominal vagal affer-
ent fibers [177], and in two interconnected areas, the area postrema
(AP) and the VMN. Estradiol treatment in OVX animals did not alter
the number or affinity of CCK receptors [178], suggesting that the
up-regulation of CCK receptors does not mediate the increased sen-
sitivity to CCK following estradiol treatment. Estrogen increased the
potency of CCK by increasing the sensitivity of vagal CCK-A recep-
tors, but did not increase CCK secretion or the number of CCK-A
receptors [178–181].

CCK’s effects on meal size have been characterized in male rats
by examining the pattern of c-Fos expression after consumption
[182–187] or injection of CCK [188–192]. Estradiol treatment in
OVX rats increased the number of feeding- and CCK-induced c-Fos-
positive cells within the NTS, PVN, and the central nucleus of the
amygdala [183,193]. These data suggest that exogenous estradiol
may decrease meal size by selectively increasing neuronal activ-
ity in multiple brain areas that control meal size. It is currently
unknown whether a similar mechanism underlies the decrease in
meal size or increase in CCK satiation, which occurs during estrus
in cycling rats.

Although there is solid evidence that estradiol increases the
potency by which CCK exerts its direct, inhibitory control over
meal size, such an interaction does not completely account for
the decrease in food intake during estrus in gonadally intact rats
or following estradiol treatment in OVX rats. For example, block-
ing the release of CCK during a meal attenuated, but did not
block, the phasic inhibitory decrease in meal size, observed dur-
ing estrus in gonadally intact rats [174]. Additionally, endogenous
CCK does not appear to play a role in the tonic inhibitory action
of estradiol [172,174]. Thus, estradiol must modulate the potency
of other stimuli that directly generate negative feedback during a
meal.

4. Summary

This review focused on the literature describing estrogen’s inter-
actions with orexigenic and anorexigenic neuropeptides and how
these interactions affect food intake and adiposity. In addition,
estrogen’s steroid structure imparts anti-inflammatory effects that
may explain how intact females on HF diets decrease inflamma-
tion. Understanding the neurophysiology of estrogen may lead to
possible interventions for post-menopausal women, who are at an
increased risk for the metabolic syndrome.
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